Echocardiographie clinique
-
Introduction à l'échocardiographie et à l'imagerie par ultrasons12 Chapters
-
Introduction à la physique des ultrasons
-
Le transducteur à ultrasons
-
Aspects techniques de l'image échographique
-
Échocardiographie bidimensionnelle (2D)
-
Optimisation de l'image échographique
-
Échocardiographie en mode M (mode mouvement)
-
Effet Doppler et échocardiographie Doppler
-
Doppler à ondes pulsées
-
Doppler à ondes continues (CW Doppler)
-
Doppler couleur
-
Doppler tissulaire (imagerie de vélocité tissulaire)
-
Artéfacts dans l'imagerie ultrasonore
-
Introduction à la physique des ultrasons
-
Principes et calculs hémodynamiques5 Chapters
-
L'examen échocardiographique3 Chapters
-
Fonction systolique et contractilité du ventricule gauche11 Chapters
-
Fonction ventriculaire gauche
-
Mécanique du myocarde : Structure et fonction des fibres myocardiques
-
Relation pression-volume du ventricule gauche : Précharge, postcharge, volume d'éjection, contrainte de paroi & ; loi de Frank-Starling
-
Assessing left ventricular systolic function
-
Left ventricular mass and volume (size)
-
Ejection fraction (EF): Physiology, Measurement & Clinical Evaluation
-
Fractional shortening for estimation of ejection fraction
-
Strain, strain rate and speckle tracking: Myocardial deformation
-
Left Ventricular Segments for Echocardiography and Cardiac Imaging
-
The Coronary Arteries
-
Regional Myocardial Contractile Function: Wall Motion Abnormalities
-
Fonction ventriculaire gauche
-
Left ventricular diastolic function3 Chapters
-
Cardiomyopathies6 Chapters
-
Heart failure: Causes, types, diagnosis, treatments & management
-
Echocardiography in cardiomyopathies: an overview
-
Hypertrophic Cardiomyopathy (HCM) & Hypertrophic Obstructive Cardiomyopathy (HOCM)
-
Dilated Cardiomyopathy (DCM): Definition, Types, Diagnostics & Treatment
-
Arrhythmogenic Right Ventricular Cardiomyopathy / Dysplasia (ARVC, ARVD)
-
Tachycardia induced cardiomyopathy
-
Heart failure: Causes, types, diagnosis, treatments & management
-
Valvular heart disease8 Chapters
-
Miscellaneous conditions5 Chapters
-
Pericardial disease2 Chapters
Fractional shortening for estimation of ejection fraction
Fractional shortening (FS) for estimating systolic function
Fractional shortening (FS) is calculated by measuring the percentage change in left ventricular diameter during systole. It is measured in parasternal long axis view (PLAX) using M-mode. The end-systolic and end-diastolic left ventricular diameters are measured. The following formula is used to calculate fractional shortening:
FS (%) = (LVEDD – LVESD / LVEDD) • 100
Fractional shortening is a rather poor measure of left ventricular systolic function. This is due to the following reasons:
- Left ventricular geometry must be normal.
- There must not be regional differences in contractile function. Otherwise, the point of measurement may not be representative.
- Ventricular activation must be normal. For example, in the setting of left bundle branch block (LBBB), fractional shortening is not representative of ventricular function, since the activation proceeds abnormally.
Normal value for fractional shortening (FS)
Normal FS, M-mode | >25% |
Normal FS, 2D measurement | >18% |
Advantages of fractional shortening
If ventricular geometry is normal and there are no regional wall motion abnormalities, then fractional shortening correlates strongly with ejection fraction. Similar to ejection fraction, fractional shortening is affected by preload and afterload. It possible to calculate fractional shortening using measurements in 2D.